Parallel Unsteady Turbopump Flow Simulations For Reusable Launch Vehichles

Cetin Kiris ELORET

and

Dochan Kwak
NASA Ames Research Center

Computing the Future III June 26-28,2000, Half Moon Bay, CA

- INTRODUCTION
 - Major Drivers of the Current Work
 - Objectives
- APPROACH / PROGRESS
 - Computational models
 - Code parallelization
 - Time-accuracy and integration schemes
- SUMMARY

2

Major Drivers of the Current Work

• TOOLS FOR AEROSPACE DESIGN

Decrease design cycle time ⇒ Rapid turn-around

Increase design/process fidelity ⇒ High accuracy and low variation

Increase discipline integration ⇒ Increased range of options via IT

Turbo-pump component analysis => Entire turbo pump simulation

• HPCC CAS Level 1 milestone:

To demonstrate a 1000 times speed up in June 2001 over what was possible in FY92.

Objectives

 To enhance incompressible flow simulation capability for developing acrospace vehicle components, especially, unsteady flow phenomena associated with high speed turbo pump

Page 4

Time-Accurate Formulation

• Time-integration scheme

Artificial Compressibility Formulation

- Introduce a pseudo-time level and artificial compressibility
- Iterate the equations in pseudo-time for each time step until incompressibility condition is satisfied.

Pressure Projection Method

 Solve auxiliary velocity field first, then enforce incompressibility condition by solving a Poisson equation for pressure.

Pressure Projection Method

- Evaluate time-accurate features of two primitive variable methods designed for 3-D applications
 - Solve for the auxiliary velocity field, using implicit predictor step $\frac{1}{\Delta t}(u_i^*-u_i^*) = -\nabla p^* + h(u_i^*)$
- The velocity field at time level (n+1) is obtained by using a correction step,

$$\frac{2}{\Delta t}(u_i^{n+1}-u_i^*) = -\nabla p^{n+1} + h(u_i^{n+1}) - \nabla p^* + h(u^*)$$

• The incompressibility condition is enforced by using a Poisson equation for pressure $(p = p^{n+1} - p^n)$

$$\nabla^2 p = \frac{2}{\Delta t} \nabla \mathbf{u}$$

Pressure Projection Method(INS3D-FS)

 The discretization of the mass conservation equation in finite volume formulations

$$(S^{\xi}\mathbf{n})_{j+1/2} - (S^{\xi}\mathbf{n})_{j-1/2} + (S^{\eta}\mathbf{n})_{k+1/2} - (S^{\eta}\mathbf{n})_{k-1/2} + (S^{\zeta}\mathbf{n})_{l+1/2} - (S^{\zeta}\mathbf{n})_{l-1/2} = 0$$

· New dependent variables,

$$U_{\zeta}=\mathbf{S}_{\zeta}$$
.n
 $U_{\zeta}=\mathbf{S}_{\zeta}$.n

- Computing time : 80 μ-secs/grid point/iteration
- Memory usage: 70 times number of grid points in words

Artificial Compressibility Method (INS3D-UP)

Time-Accurate Formulation

• Discretize the time term in momentum equations using second-order three-point backward-difference formula

$$\left| \frac{\partial U}{\partial \xi} + \frac{\partial V}{\partial \eta} + \frac{\partial W}{\partial \zeta} \right|^{n+1} = 0 \qquad \frac{3q^{n+1} - 4q^n + q^{n-1}}{2\Delta t} = -r^{n+1}$$

- Introduce a pseudo-time level and artificial compressibility,
- Iterate the equations in pseudo-time for each time step until incompressibility condition is satisfied.

$$\frac{1}{\Delta \tau} (p^{n+1,m+1} - p^{n+1,m}) = -\beta \nabla q^{n+1,m+1}$$

$$\frac{1.5}{\Delta t} (q^{n+1,m+1} - q^{n+1,m}) = -r^{n+1,m+1} - \frac{3q^{n+1,m} - 4q^{n} + q^{n-1}}{2\Delta t}$$

- Computing time: 50-120 μ-secs/grid point/iteration
- Memory usage: Line-relaxation 45 times number of grid point in words GMRES-ILU(0) 220 times number of grid point in words

Summary

is

- An efficient solution procedure for time-accurate solutions of Incompressible Navier-Stokes equation is obtained.
 - Artificial compressibility method requires a fast convergence scheme..
 - Pressure projection method is efficient when small time-step is required.
 - The number of sub-iteration is reduced significantly when Poisson solver employed with the continuity equation.
 - Both computing time and memory usage are reduced (at least 3 times).
 - DCF module in OVERFLOW-D is incorporated with INS3D.
 - MPI /Open MP hybrid parallel code has been completed and benchmarked.
- Work currently underway
 - Multi Level Parallelism (MLP) of INS3D.
 - Overset connectivity for the validation case (SSME-rig1)
 - Experimental measurements at NASA-MSFC.
 - Computational model for boost pump